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Abstract
A general dynamical system composed of two coupled sectors is considered.
The initial-time configuration of one of these sectors is described by a set of
classical data while the other is described by standard quantum data. These
dynamical systems will be named half quantum and the aim of this paper
is to derive their dynamical evolution. The standard approach would be to
use quantum mechanics to make predictions for the time evolution of the half
quantum initial data. The main problem is how quantum mechanics can be
applied to a dynamical system whose initial time configuration is not described
by a set of fully quantum data. A solution to this problem is presented and used
as a guideline to obtain a general formulation of coupled classical–quantum
dynamics. Finally, a quantization prescription mapping a given classical theory
to the corresponding half quantum one is presented.

PACS numbers: 0365B, 0365C, 0365S

1. Introduction

Quasiclassical dynamics [1], hybrid dynamics [2] and, in this paper, half quantum mechanics
are some of the several attempts [3–7] to obtain a consistent formulation of coupled classical–
quantum dynamics. The motivation to develop such a theory comes from a variety of different
sources. The theory is expected to make important contributions to clarify the measurement
procedure in quantum mechanics, where one would like to obtain an analytic description of
the wavefunction collapse [8–10]. Closely related is the problem of developing a consistent
quantization procedure for closed dynamical systems [11, 12]. Other important applications
are expected. These include semiclassical gravity, quantum field theory in curved spacetime
and quantum cosmology [5, 8, 11, 13, 14].

Two main approaches to the problem have been followed: in [1, 3, 4] a set of axioms
defining the quasiclassical dynamics were proposed and motivated in terms of the consistency
of the resulting theory. On the other hand is the deductive approach where the intention is
to derive the coupled classical–quantum dynamics from quantum mechanics [2, 5–7]. In this
paper we shall follow this second approach. We assume that, just like classical mechanics,
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half quantum mechanics is an approximate description of quantum mechanics that derives
its validity from reproducing, ‘in some appropriate sense’, the predictions of the underlying
theory of quantum mechanics.

Our approach will be as follows: a general half quantum system is composed of two
coupled sectors. One of these sectors is named classical and the other quantum. The initial
data for a half quantum system is given by a set of classical data and associated error margins
(Oi(t = 0), δi(t = 0)) for the classical sector observables plus a standard quantum datum, say
an initial-time wavefunction |φQ〉 for the quantum sector. The classical data provide only an
approximate description of the true physical configuration of the classical sector. The complete
description of this configuration is given by some unknown wavefunction |φc〉. Clearly not
all wavefunctions |φc〉 provide a description of the classical sector initial time configuration
consistent with the classical description (Oi(t = 0), δi(t = 0)). Our first step will be to
identify a set of wavefunctions |φc〉 compatible with the classical initial data. We will be able
to do this by using a classicality criterion that was presented in a related paper [15] and which
proved to work out successfully when the intention was to study the consistency between the
full classical and full quantum descriptions of a general dynamical system.

The next step is to use quantum mechanics to obtain the time evolution of the class of
quantum initial data |φ〉 = |φQ〉|φc〉. The predictions of quantum mechanics, i.e. the time
evolution of the class of wavefunctions |φ〉, will not be completely determined. This is so
because we do not have a single initial data wavefunction, but instead we are calculating the
time evolution for a class of initial data wavefunctions. Therefore, quantum mechanics provides
a set of predictions inside an error interval. The main result is then that these predictions might
be fully recovered by an appropriate formulation of classical–quantum dynamics, which will
be named half quantum mechanics. In this formulation the dynamical system is not fully
quantized, the classical data describing the initial-time configuration of the classical sector are
explicitly used and dynamics is obtained as the time evolution of the classical and quantum
initial data. Still, we are able to recover the predictions of quantum mechanics for the time
evolution of the class of wavefunctions |φ〉. This is the desired result. It means that the half
quantum framework is derived as the appropriate limit of quantum mechanics. We will find
that the theory derived here is just the same as postulated by Boucher and Traschen in [4]. The
approach however, is rather different. In that paper the theory was motivated by the properties
one would like to see satisfied by a theory of coupled classical–quantum dynamics.

Our derivation presents some interesting features:

(i) it explicitly provides the degree of precision of the half quantum predictions.
(ii) It states what type of initial datum and dynamical behaviour a system should have so that

it can be described by the half quantum framework.
(iii) It sets out a general procedure to develop other, eventually more consistent or better

behaved, classical–quantum dynamics frameworks.
(iv) It provides a half quantization procedure mapping the classical formulation of a given

dynamical system to its half quantum formulation.

2. From quantum mechanics to half quantum mechanics

Let us set out the preliminaries: we are given a dynamical system with N + M degrees of
freedom. N represents the number of degrees of freedom of the quantum sector, while M
concerns the classical sector. The phase space of the classical formulation of the system
is spanned by a set of canonical variables {qk, pk}, k = 1 . . . (M + N), more succinctly
designated byOk, k = 1 . . . 2(M +N). The classical sector canonical variables are denoted by
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(qi, pi), i = 1 . . .M or just by Oi, i = 1 . . . 2M and the quantum sector canonical variables
by (qα, pα), α = (M + 1) . . . (M + N) or Oα, α = (2M + 1) . . . 2(M + N). The total phase
space is assumed to have a structure given by T ∗M1 ⊗ T ∗M2 where T ∗M1 is the classical
sector phase space and T ∗M2 is the quantum sector phase space. By performing the Dirac
quantization [16, 17] we obtain the quantum formulation of the dynamical system. We also
supply a complete set of commuting observables (CSCO). We will take the CSCO to be {q̂i , q̂α}.
The set of common eigenvectors of the CSCO spans the Hilbert space H = H1 ⊗ H2. Taking
into account the structure of the Hilbert space the general eigenvector might be written as
|k1, . . . , kN 〉|z1, . . . , zM〉, where the k are eigenvalues of the operators q̂α and the z are those
of the operators q̂i .

The aim now is to use the full quantum formulation of the dynamical system to study the
time evolution of the half quantum initial data. This is far from being straightforward, the first
problem being how to use the half quantum initial data to produce fully quantum initial data
for the quantum theory. This problem will be approached in this section.

2.1. From quantum mechanics to half quantum mechanics—kinematics

The half quantum dynamical system is composed of two sectors. The initial-time configuration
of one of these sectors is described by a set of classical data. That is, a value O0

i and an error
margin δi are assigned to each classical sector observable Oi . The aim is to convert these
classical data into a fully quantum one, |φc〉 ∈ H1. Clearly, not all wavefunctions |φc〉 will
be suitable. We are looking for a class of wavefunctions {|φc〉} providing a description of
the initial-time configuration consistent with the classical description (O0

i , δi). To obtain this
class of wavefunctions we impose that |φc〉 should satisfy a set of classicality conditions that
were defined and studied in [15]. More precisely, we require |φc〉 to be L-order classical
(L ∈ N ) with respect to the classical data (O0

i , δi). The higher the order of classicality L, the
greater will be the degree of consistency between the classical and the quantum descriptions.
Alternatively, it may be worth thinking about the classicality criterion in an equivalent but
slightly different perspective: the degree of classicality can be seen as the degree of validity of
the classical description of the dynamical system. The classical description is valid up to some
degreeL if the true, physical configuration of the dynamical system is given by a wavefunction
|φc〉, L-order classical with respect to that classical description. Finally, let us point out that
we will not fix the value of L. In fact, L is to be one of the parameters of the formalism and
later we will find that its value is related to the precision of the half quantum predictions.

Let us give a brief review of the definition of the classicality criterion. Let Ok(t)
be the classical time evolution of an arbitrary fundamental observable (belonging to the
classical or to the quantum sector) and let Sia be any sequence of classical sector observables
Sia = Oi1 ,Oi2 . . . Oin—associated with a sequence 1 � ia � 2M,a = 1 . . . n (n is arbitrary)—
such that

∂nOk(t)

∂Sia
= ∂nOk(t)

∂Oi1 . . . ∂Oin

= 0 (1)

for some k = 1 . . . 2(N +M). With all sequences satisfying the former relation we can obtain
a set of mixed error kets (the reader should refer to the appendix for the relevant definitions):

|ESia 〉 = (Ôi1 −O0
i1
)(Ôi2 −O0

i2
) . . . (Ôin −O0

in
)|φc〉 (2)

where the quantities O0
ia

refer to the values of the corresponding observables Oia at the initial
time. The classical sector initial-time wavefunction |φc〉 will be first-order classical if it
satisfies

〈ESia |ESia 〉 � (δSia )
2 = δ2

i1δ
2
i2 . . . δ

2
in (3)
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for all the sequences Sia determined in (1). In the former equation δia are the error margins
associated with the classical initial data. Notice that given the classical initial data and its
error margins the former inequalities constitute a set of requirements on the functional form of
the wavefunction |φc〉. To go further we consider the L-order sequences SLia = SiaSi ′a . . . Si ′′a
constituted by L arbitrary first-order sequences Sia (determined in (1)) and write the system
of inequalities (3) for these sequences. If the wavefunction |φc〉 satisfies (3) for all possible
L-order sequences then we say that |φc〉 is L-order classical. The set {|φc〉}L of all L-order
classical wavefunctions is the class of wavefunctions we wanted to determine.

The classicality criterion was developed in a related paper [15]. There the intention was to
study the conditions that the initial-time wavefunction |φ〉 of a general quantum system (withM
degrees of freedom) should satisfy so that its time evolution—given by |φ(t)〉, solution of the
Schrödinger equation—is consistent with the classical treatment of the system, given byOi(t)
(i = 1 . . . 2M), solutions of the Hamiltonian equations and associated error margins δi(t).
The main result of that paper was that if |φ〉 satisfies the conditions (3) for all sequences
SLia , formed by L arbitrary fundamental sequences determined in (1) (i.e. if |φ〉 ∈ {|φ〉}L),
then |φ(t)〉 satisfies the following property for all times: in the representation of any of the
observables Ôi , the wavefunction |φ(t)〉 has at least a probability p confined to the interval
Ii = [Oi(t)− δi(t)/(1 − p)1/2L,Oi(t) + δi(t)/(1 − p)1/2L], that is

∑
ai∈Ii ,n |〈ani |φ(t)〉|2 � p

for all i = 1 . . . 2M and for all 0 � p < 1. In the former expression |ani 〉 is a general
eigenvector of the operator Ôi with associated eigenvalues ai and degeneracy index n. By
simple inspection we notice that the higher the degree of classicality L, the more confined are
the probabilistic distribution functions associated with |φ(t)〉, in the representation of any of
the observables Ôi , around the corresponding classical intervals [Oi(t)− δi(t),Oi(t) + δi(t)].
Therefore condition (3) provides a suitable measure of classicality and it might be used to
determine the set of wavefunctions compatible with the classical initial data.

Let us see how this works in the simple example of the harmonic oscillator. The classical
Hamiltonian is given byH = 1

2 (q
2 +p2), where q and p are a pair of canonical variables and,

to make it simple, we have set w = m = 1. By solving the equations of motion we obtain the
classical time evolution of the canonical variables and the corresponding error margins:

q(t) = q(0) cos t + p(0) sin t δq(t) = | cos t |δq(0) + | sin t |δp(0)
p(t) = q(0) sin t + p(0) cos t δp(t) = | sin t |δq(0) + | cos t |δp(0).

(4)

Let |φ〉 be the initial data wavefunction for the quantum harmonic oscillator and let us determine
the conditions of L-order classicality for |φ〉. The first step is to determine the fundamental
sequences (1). They are the single-value sequences S1 = q and S2 = p. For the L-order
classical conditions the relevant sequences are arrays of L fundamental sequences:

SL = (z1, . . . , zL) zi = q ∨ p i = 1 . . . L (5)

and the condition of L-order classicality (3) reads 〈Ez1,...,zL |Ez1,...,zL〉 � δ2
z1
(0) . . . δ2

zL
(0),

∀SL = (z1, . . . , zL) in (5), which is equivalent to

〈φ|(ẑ1 − z1(0)) . . . (ẑL − zL(0))(ẑL − zL(0)) . . . (ẑ1 − z1(0))|φ〉 � δ2
z1
(0) . . . δ2

zL
(0). (6)

Using the Shwartz inequality and disregarding the contribution of terms proportional to h̄2,
the former inequalities are reduced to

{ 〈φ|(q̂ − q(0))2L|φ〉 � δq(0)2L
〈φ|(p̂ − p(0))2L|φ〉 � δp(0)2L

⇐⇒



∫
(q − q(0))2L|φ(q)|2 dq � δq(0)2L∫
(p − p(0))2L|φ(p)|2 dp � δp(0)2L.

(7)
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Given the classical initial data {q(0), p(0), δq(0), δp(0)}, (7) constitutes a system of inequalities
to be satisfied by initial data wavefunction |φ〉. Its set of solutions is {|φ〉}L. The higher the order
of classicality L the more restrictive is the former system. For typical values of δq(0), δp(0)
(and choosing L of reasonable size) there are many solutions of (7). Gaussian wavepackets,
for instance, provide well known solutions:

φG(q0, p0, q, q) = 1

(2!( q)2)1/4
exp

{
− (q − q0)

2

4( q)2
+ ip0q/h̄

}
. (8)

In fact, if we take the parameters q0 and p0 to be given by q0 = q(0) and p0 = p(0), and
substitute φ by φG(q(0), p(0), q, q) in (7) we obtain

(2L− 1)!

2L−1((L− 1)!)
( q)2L � δq(0)2L ∧ (2L− 1)!

2L−1((L− 1)!)

(
h̄

21/2 q

)2L

� δp(0)2L. (9)

We notice that the higher the value of L the more confined will be the wavefunction |φ〉 (in
particular the Gaussian wavefunction |φG〉) in the representation of both q̂ and p̂.

The main result of [15] is that all wavefunctions |φ〉 ∈ {|φ〉}L display a time evolution
satisfying the following property for all times:∫ q(t)+

δq (t)

(1−P)1/2L

q(t)− δq (t)

(1−P)1/2L

|φ(q, t)|2 dq � P ∧
∫ p(t)+

δp(t)

(1−P)1/2L

p(t)− δp(t)

(1−P)1/2L

|φ(p, t)|2 dp � P ∀0�P<1 (10)

where q(t), p(t), δq(t), δp(t) are given by (4), |φ(t)〉 is the solution of the Schrödinger equation

ih̄∂/∂t |φ(t)〉 = 1/2(q̂2 + p̂2)|φ(t)〉 |φ(t = 0)〉 = |φ〉 (11)

and P is an arbitrary probability. Take for instance L = 1 and P = 0.99, equation (10)
states that 99% of the probability of the wavefunction |φ(t)〉, in the representations of
both q̂ and p̂, is confined to the classical intervals [q(t) − 10δq(t), q(t) + 10δq(t)] and
[p(t) − 10δp(t), p(t) + 10δp(t)], respectively. This statement is valid for all times and, for
the case of Gaussian wavepackets it can be easily verified by numerical computation of the
integrals (10).

To see what happens when we increase the degree of classicality let us now consider
L = 10. The classicality conditions are given by (7) with L = 10 (in particular, Gaussian
solutions should satisfy (9) with L = 10). The time evolution of an arbitrary 10th-order
classical wavefunction satisfies (10) with L = 10. In particular for P = 0.99 we have
(1 − P)1/20 = 0.79 and thus∫ q(t)+1.25δq (t)

q(t)−1.25δq (t)
|φ(q, t)|2 dq � 0.99 ∧

∫ p(t)+1.25δp(t)

p(t)−1.25δp(t)
|φ(p, t)|2 dp � 0.99 (12)

where |φ(t)〉 is given by (11) and the result is valid for all times. This concludes the example.
For an arbitrary dynamical system the classicality conditions determine a class of

wavefunctions that display a time evolution consistent with the classical predictions. Such
conditions seem thus suitable to be used here to determine the class of wavefunctions |φc〉
compatible with the classical sector initial data.

In conclusion, the true physical configuration of the classical sector is given by a
wavefunction |φc〉. However, we are only given the classical imprecise description (O0

i , δi)

and thus we should not assume that we know |φc〉 completely. If we assume that the classical
initial data is L-order valid then any wavefunction belonging to the class of L-order classical
wavefunctions can be, up to what we know, the true physical configuration of the system.
Therefore, the classical sector initial configuration is properly described, not by a single
wavefunction, but by the class of L-order classical wavefunctions {|φc〉}L.
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The initial-time configuration of the other sector of the half quantum system is described
by standard quantum data. That is, we supply a completely fixed initial-time wavefunction:

|φQ〉 =
∑
k1,...,kN

Ck1,...,kN |k1, . . . , kN 〉. (13)

The final step is to put the two sectors together and obtain the total wavefunction. To make it
simple we assume that there is no kinematical coupling between the two sectors and thus the
initial data wavefunction is of the form

|φ〉 = |φQ〉|φc〉 =
∑
k1,...,kN

Ck1,...,kN |k1, . . . , kN 〉|φc〉 (14)

where |φc〉 ∈ {|φc〉}L is an L-order classical wavefunction. The set of all initial data
wavefunctions of the form (14) will be designated by {|φ〉}L. That is, {|φ〉}L = {|φ〉 =
|φQ〉|φc〉 ∈ H : |φc〉 ∈ {|φc〉}L}.

2.2. From quantum mechanics to half quantum mechanics—dynamics

The aim now is to obtain the time evolution of the initial data wavefunction (14). To do this let
us work in the Heisenberg picture and calculate the full quantum time evolution of an arbitrary
fundamental observable Ôk:

Ôk(t) =
∞∑
n=0

1

n!

(
t

ih̄

)n
[. . . [Ôk, Ĥ ], . . . , Ĥ ]. (15)

Let us designate the general operator Ôk(t0) just by Â. The aim is then to study the functional
form of the initial data wavefunction in the representation of Â. The first step is to write the
general observable Â as a sum of multiple products of the fundamental observables:

Â =
∑
j

Âc
j Â

Q
j :



Âc
j = cj

nj∏
a=1

Ôc
ia(j)

Â
Q
j =

mj∏
b=1

Ô
Q
αb(j)

(16)

where for each j the sets of coefficients ia(j) and αb(j) are two sequences, the first one having
values in {1 . . . 2M} and the second one in {2M+1 . . . 2(M+N)}, being cj complex parameters
that may depend on time. Let us proceed naively and try to obtain predictions for the outputs of
a measurement of Â. Let then |ani 〉 be the general eigenvector of Â with associated eigenvalue
ai and degeneracy index n. Using the standard prescription the predictions are given by the set
of pairs (ai, P (ai)) where P(ai) = ∑

n |〈ani |φ〉|2. We easily realize that we have a problem.
In fact we do not know |φ〉 completely and so the calculation of P(ai) is, to say the least, not
straightforward.

To circumvent the problem we introduce a new operator B̂ obtained by applying a map
V0, named unquantization, to the operator Â. This map V0 is defined as a trivial extension
of the full unquantization map (mapping quantum operators to full classical observables) that
was defined and studied in a related paper. Let us then present the definition of V0:

Definition 1 (First unquantization map). Let A(H) be the algebra of linear operators acting
on the Hilbert space H = H1 ⊗ H2 and let S be the algebra of C∞ functionals S = {f :
T ∗M1 −→ A(H2)}. The unquantizationV0 is a map from A(H) to S that satisfies the following
rules (we use the notation of (16)):

(1) V0(
∑
j Â

c
j Â

Q
j ) = ∑

j V0(Â
c
j )V0(Â

Q
j ).
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(2) V0(Â
Q
j ) = ÂQ

j .

(3) V0(Â
c
j ) = Ac

j . The unquantization map that take us from Âc
i to Ac

i was defined in [15],
when the intention was to derive the full classical observable that corresponds to a general
quantum operator. The following steps defined this procedure: (i) Âc

j should be expanded
as a sum of a Hermitian operator and an anti-Hermitian one, (ii) all antisymmetric terms
of Âc

j should then be executed, i.e. all the commutators present in Âc
j should be calculated,

and (iii) finally, given Âc
j displayed in an order satisfying the two previous requirements,

we perform the substitution of the quantum fundamental operators present in Âc
j by the

corresponding classical canonical variables, i.e. if Âc
j = F(Ôi) where F satisfies the

order requirements (i) and (ii) then Ac
j = F(Oi).

Notice that the mapV0 is beset by order problems. In section 3 we will study the properties
of V0 in detail and in particular, we will see that these order problems do not affect the results
of this section. Moreover we will also see that V0 is just a trivial extension of the Dirac
unquantization map, i.e. for an arbitrary classical sector observableAc we haveV0◦∧(Ac) = Ac

where ∧ is the standard Dirac quantization map [16, 17]. To proceed we apply V0 to Â and
obtain

B̂ =
∑
j

Ac
j Â

Q
j . (17)

Let us elaborate on the reasons why we are introducing this new operator. The answer is
twofold: firstly, B̂ is the most similar operator to Â for which we are able to calculate
probabilities once the half quantum initial data are given. In fact to calculate P(bu) =∑
r |〈bru|φQ〉|2—where |bru〉 is a complete set of eigenstates of B̂(a0

i ) (spanning the Hilbert
space H2) with associated eigenvalue bu and degeneracy index r—we only need to know the
half quantum initial data (a0

i , |φQ〉). Secondly, if |φc〉 is L-order classical with respect to the
classical data (a0

i , δi) then the probabilities P(bu) associated with B̂(a0
i ) and |φQ〉 can be used

to obtain an upper and lower limit for the probabilities P(ai) associated with Â and |φQ〉|φc〉.
Let us make this second statement more precise: let us consider an interval I =

[a0 − D, a0 + D] of eigenvalues of Â. The aim is then to calculate the probabilities
P(ai ∈ I ) = ∑

ai∈I
∑
n |〈ani |φ〉|2, which are the physical predictions of the full quantum

treatment of the system. Since we do not have any information about the functional form of
the wavefunction |φc〉 at scales smaller than the classical error margins it seems reasonable
to only consider intervals with range D bigger than the classical error margins. Moreover,
since |φ〉 is not completely known (we only know that |φ〉 ∈ {|φ〉}L (14)) our best chance is to
calculate some upper and lower limits for the values of P(ai ∈ I )—that is to calculate Pmax �
max{∑n,ai∈I |〈ani |φ〉|2, |φ〉 ∈ {|φ〉}L} and Pmin � min{∑n,ai∈I |〈ani |φ〉|2, |φ〉 ∈ {|φ〉}L}—and
thus to obtain the predictions Pmin � P(ai ∈ I ) � Pmax. The main point of this section will
be to prove that Pmax and Pmin can be obtained from the probabilities P(bu) = ∑

r |〈bru|φQ〉|2,
that is from the half operator B̂ and the half quantum initial data (a0

i , |φQ〉).
This is the desired result. The consequences are that firstly we are able to make predictions

for the outputs of a measurement of the physical observable Â when the initial state of the
system is described not by a single wavefunction but by a class of wavefunctions {|φ〉}L, and
secondly, and most important, these predictions are obtained using only half quantum objects
and thus the half quantum treatment of the system is given a precise physical meaning in terms
of the probabilities for the outputs of a measurement of the real physical observable Â.

To obtain P(ai ∈ I ) from B̂ and the half quantum initial data we will follow a three-step
procedure:
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(1) in the first step (section 2.2.1) the relation between Â and B̂ is made more explicit. More
precisely, the aim is to expand Â− B̂ in powers of the monomials Ôi −Oi .

(2) In section 2.2.2 the former expansion is used to study the functional form of the eigenstates
|ψru〉 = |bru〉|φc〉 of B̂ in the representation of Â (in fact, for technical reasons we will
introduce a slightly more general set of states than |ψru〉, but this is of no relevance
now). We will calculate the maximum value of the spread of a general state of the
form |ψru〉 = |bru〉|φc〉, |φc〉 ∈ {|φc〉}L explicitly as a function of the half quantum operator
B̂ and the half quantum initial data (|φQ〉, a0

i , δi). The former result is independent of
the detailed functional form of |φc〉 (providing the wavefunction satisfies the L-order
classicality conditions) and further it will show that the states |ψru〉 are very peaked in the
representation of Â (the more peaked, the higher the order of classicality of |φc〉 and the
smaller initial data classical error margins).

(3) Roughly, what the former property tells us is that |ψru〉 is ‘almost’ an eigenstate of Â, i.e.
‘|ψru〉 � |ani 〉’, and thus the values of

∑
r |〈ψru|φ〉|2 and

∑
n |〈ani |φ〉|2 should be somehow

related. Clearly, these are very inaccurate statements and making them precise requires
some quite long calculations. In section 2.2.3 we will prove that: P(bu ∈ I ) − E �
P(ai ∈ I ) � P(bu ∈ I ) + E, where P(bu) = ∑

r |〈ψru|φ〉|2 = ∑
r |〈bru|φQ〉|2 and the

value of the errorE is proportional to the spread of the states |ψru〉 in the representation of
Â. Both P(bu ∈ I ) and E are half quantum functions and thus we succeed in obtaining
the values of Pmax = P(bu ∈ I ) + E and Pmin = P(bu ∈ I )− E from the half quantum
objects.

2.2.1. Relating Â and B̂. Let us consider the general classical sector operator Âc
j and the

corresponding classical observable Ac
j . Since Âc

j and Ac
j have the same functional form the

following relation is valid up to a correction term of order of h̄2:

Âc
j − Ac

j =
2M∑
i=1

∂Ac
j

∂Oi
(Ôi −Oi) +

1

2

2M∑
i,k=1

∂2Ac
j

∂Oi∂Ok
(Ôi −Oi)(Ôk −Ok) + · · · . (18)

This expansion was derived and discussed in detail in [15]. There we point out that (18) is
exactly valid only if Ac

j is obtained from a totally symmetric form of Âc
j . This is not the

general case if we use the unquantization map V0 to obtain Ac
j . In fact we saw in [15] that

if we use the map V0—in which case Ac
j is obtained from Âc

j displayed in an order that does
not contain antisymmetric components (see definition 1)—then the difference between the two
sides of equation (18) is given by a leading term of the form cj h̄2ε̂j , where cj is the numerical
factor in Âc

j (16) and ε̂j is the ‘operator error’ proportional to a sum of products of monomials

(Ôi − Oi), each of the products having at most nj − 2 terms (check equation (16) for the
meaning of nj ). We explicitly included the correction term cj h̄2ε̂j in (18) and obtain

(Â− B̂)L =
{∑

j

(Âc
j − Ac

j )Â
Q
j

}L

=
{ 2M∑
i=1

∂B̂

∂Oi
(Ôi −Oi) +

1

2

2M∑
i,k=1

∂2B̂

∂Oi∂Ok
(Ôi −Oi)(Ôk −Ok)

+ · · · +
∑
j

cj h̄
2ε̂j Â

Q
j

}L
. (19)
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Finally, to lowest order this expansion can be cast in the form

(Â− B̂)L =
2M∑
i1=1

· · ·
2M∑
iL=1

L∏
s=1

∂B̂

∂Ois
(Ôis −Ois ) + · · · (20)

where we disregard the contribution of the term proportional to cj h̄2. Typically, this
contribution is meaningless when compared to the terms proportional to the derivatives of
B̂. However in some artificial examples this may not be the case. Consider for instance
Â = 1/2(x̂cŷcẑc + ẑcŷcx̂c)ÂQ − 1/2(ŷcx̂cẑc + ẑcx̂cŷc)ÂQ, where x̂c, ŷc, ẑc are Hermitian,
classical sector operators of an arbitrary system. We have V0(Â) = xyzÂQ −xyzÂQ = 0 = B̂
and therefore, in this case, Â − B̂ = ∑

j cj h̄
2ε̂j Â

Q
j which, in general, is not zero. The

problem lies, of course, in the order in which Â is displayed before we apply the map V0. One
should impose the restriction that Â cannot be displayed in an order in which some unresolved
commutators are present. One easy way to check that this is the case is precisely by comparing
the magnitude of B̂ (the numerical factors in B̂) with the magnitude of cj h̄2, where the cj
are the numerical factors of Â. For physical relevant examples (physical Hamiltonians and
observables), namely for the time evolution of a general quantum observable, it is easy to
verify whether the original operator Â is in an adequate order (this is in fact the typical case),
and thus, upon unquatization, one has magnitude (B̂) ∝ cj h̄0 � cj h̄

2. Therefore, and keeping
the caution remark in mind, we shall take the result (20) to be exactly valid.

2.2.2. Relating the eigenstates of B̂ to the eigenstates of Â. Let us start by introducing the
states |ψru〉 = |φc〉|bru〉 where |bru〉 form a complete set of eigenstates of B̂ (spanning the Hilbert
space H2) and |φc〉 ∈ {|φc〉}L is the classical sector initial data wavefunction. For reasons that
will became clear later on we will also introduce the more general set of states of the form

|ξu〉 = |ξQ
u 〉|φc〉 = 1

Cu

∑
r,b′

u∈Iu
〈b′r
u |φQ〉|b′r

u 〉|φc〉 (21)

where Cu = 〈φ|ξu〉 is a normalization constant, |b′r
u 〉 are eigenstates of B̂ and Iu =

[bu − IB, bu + IB] where bu is named the central eigenvalue associated with |ξu〉 and IB
is a constant to be supplied later, that represents the spread of |ξu〉 in the representation of B̂.
We are specially interested in a set of states |ξu〉 associated with a sequence S of eigenvalues
bu of B̂. These eigenvalues are chosen in such a way that their value grows in steps of 2IB .
This way we guarantee that firstly 〈ξu|ξu′ 〉 = δu,u′ and secondly that |φ〉 = ∑

bu∈S〈ξu|φ〉|ξu〉.
The set of states |ξu〉 is in some sense a generalization of the set of eigenstates |ψru〉. In

fact, we notice that for IB = 0 the set {|ξu〉} reduces to a set of true eigenstates of B̂. Moreover
they can be used to obtain the probabilities of |φ〉 in the representation of B̂, providing we
only consider intervals of eigenvalues I of range multiple of IB :

P(b′
u ∈ I ) =

∑
r,b′

u∈I
|〈φ|b′r

u 〉|φc〉|2 =
∑
bu∈I∩S

|〈ξu|φ〉|2. (22)

The reason we are introducing these new states is that they will be used (in section 2.2.3) to
obtain the probabilities of Â as a function of the probabilities of B̂. As we will see, such a
relation cannot be obtained, because of larger interference effects, if we use the states |ψru〉.

This said, let us obtain the maximum value of the L-order spread of |ξu〉 in the
representation of Â (the reader should refer to the appendix for the relevant definitions).

Theorem. If |φc〉 is anL-order classical wavefunction with respect to the classical data (a0
i , δi)

then the L-order spread  L(Â, ξu, bu, p) of the general state |ξu〉 in the representation of Â
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satisfies

 L(Â, ξu, bu, p) � δL(B̂) + IB
(1 − p)1/2L (23)

where δL(B̂), named the L-order error margin of B̂, is given by

δL(B̂) =
2M∑
i=1

∣∣∣∣∣∣〈ξQ
u |
(
∂B̂†

∂Oi

)L (
∂B̂

∂Oi

)L
|ξQ
u 〉
∣∣∣∣∣∣
1/2L

δi

+ · · · +
1

n!

2M∑
i,k,...,s=1

∣∣∣∣∣∣〈ξQ|
(

∂nB̂†

∂Oi∂Ok · · · ∂Os

)L (
∂nB̂

∂Oi∂Ok · · · ∂Os

)L
|ξQ〉

∣∣∣∣∣∣
1/2L

×δiδk . . . δs (24)

and the reason δL(B̂) was named the ‘L-order error margin of B̂’ is the resemblance
of its functional form to the standard error margin of an arbitrary classical observable:
δB = ∑2M

i=1 |∂B/∂Oi |δi + · · · + 1
n!

∑2M
i,k,...,s=1 |∂nB/∂Oi∂Ok · · · ∂Os |δiδk · · · δs .

Proof. The L-order spread

 L(Â, ξu, bu, p) = 〈EL(Â, ξu, bu)|EL(Â, ξu, bu)〉1/2L

(1 − p)1/2L
can be cast in the form

 L(Â, ξu, bu, p) = |〈ξu|(Â− bu)2L|ξu〉|1/2L
(1 − p)1/2L = |〈ξu|{(Â− B̂) + (B̂ − bu)}2L|ξu〉|1/2L

(1 − p)1/2L . (25)

Expanding the polynomial inside the bracket and using the Schwartz inequality L times to
separate the terms in (Â− B̂) of those in (B̂ − bu) we obtain

 L(Â, ξu, bu, p) � 1

(1 − p)1/2L {|〈ξu|(Â− B̂)2L|ξu〉|1/2L + |〈ξu|(B̂ − bu)2L|ξu〉|1/2L} (26)

where we disregard the contribution of terms proportional to h̄2 or smaller. For the first average
value in (26) we use the expansion (20) and easily find that

|〈ξu|(Â− B̂)2L|ξu〉| �
2M∑
i1=1

. . .

2M∑
iL=1

2M∑
k1=1

. . .

2M∑
kL=1

|〈EOk1,...,OkL |EOi1 ,...,OiL〉|

×
∣∣∣∣∣〈ξQ
u | ∂B̂

†

∂Ok1

· · · ∂B̂
†

∂OkL

∂B̂

∂Oi1
· · · ∂B̂
∂OiL

|ξQ
u 〉
∣∣∣∣∣ + · · · . (27)

Using the Shwartz inequality L times, the relation (3) and disregarding the contributions of
terms proportional to h̄2 or smaller we obtain |〈ξu|(Â− B̂)2L|ξu〉|1/2L � δL(B̂). This result is
valid up to any order since |φc〉 is L-order classical and so the relation 〈ESLia |ESLia 〉 � (δSLia

)2

is valid for all the sequences SLia determined in (1), which are exactly those involved in the

expansion (27) of |〈ξu|(Â− B̂)2L|ξu〉|.
Replacing the former result in (26) and using, for the second average value of (26), the

inequality 〈ξu|(B̂ − bu)2L|ξu〉 = 〈EL(B̂, ξQ
u , bu)|EL(B̂, ξQ

u , bu)〉 � I 2L
B , which can easily be

obtained from (21), we finally obtain the relation (23), proving the theorem. �
Two remarks are in order. Firstly, notice that the value of the spread  L(Â, ξu, bu, p)

is given as an exclusive function of half quantum quantities: we are not required to supply
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the wavefunction |φc〉 or the full quantum operator Â and yet the spread is that of |ξu〉 in the
representation of Â. Secondly, we point out that using the result (a) of the appendix we can
state that in the representation of Â the state |ξu〉 has at least a probability p in the interval
I = [bu− L(p), bu+ L(p)], with L(p) given by (23), that is

∑
n,ai∈I |〈ani |ξu〉|2 � p. Take

for instance the classical initial data to be 10th-order valid,L = 10, and let us choosep = 0.99.
We have 1/(1−p)1/2L = 1.25 and thus the statement is that 99% of the probability of |ξu〉 in the
representation of Â is confined to the interval [bu−1.25(δ10(B̂)+ IB), bu + 1.25(δ10(B̂)+ IB)],
where bu is the central eigenvalue associated with |ξu〉 and δ10(B̂) is given by (24). For small
values of the classical error margins |ξu〉 are very peaked states in the representation of Â and
we suspect that we might be able to use them, instead of the true eigenvectors of Â, to obtain
the physical probabilities P(ai ∈ I ). This will be the aim of the next section.

2.2.3. Relating the probabilities in the representation of Â with the probabilities in the
representation of B̂. Finally, the aim is to obtain predictions for the probability of a
measurement of Â yielding an eigenvalue ai ∈ I0, where I0 is an interval of size at least  L,
with L given by (23). More precisely our predictions will be that the probability P(ai ∈ I0)
is at the most Pmax(ai ∈ I0) and at the least Pmin(ai ∈ I0), the error margin being a function of
L, typically of reasonable size.

Let us then consider the following three intervals. I0 = [a0 −D, a0 +D] is the interval
of eigenvalues of Â for which we want to determine P(ai ∈ I0). D is required to satisfy
D >  L. The two other intervals Imax and Imin will be needed to majorate and minorate the
former probability. Imax is such that any |ξu〉 with associated central eigenvalue bu ∈ I0 has
in the representation of Â a probability of at least p in Imax. For Imin the statement is that
if bu ∈ Imin then |ξu〉 has a probability of at least p in I0. We easily see that the intervals
Imin = [a0 − (D− L), a0 + (D− L)] and Imax = [a0 − (D + L), a0 + (D + L)]—where
 L =  L(Â, ξu, bu, p) is given by (23) and bu ∈ I0—will satisfy the former requirements.
Notice that we have assumed that  L has a similar value for different bu within I0. If this is
not the case all the future results are still valid; we just need to be more careful in constructing
the intervals Imax and Imin. This said, let us then calculate the probabilities P(ai ∈ I ). We
have

P(ai ∈ I0) =
∑
n,ai∈I0

|〈φ|ani 〉|2 =
∑
n,ai∈I0

∣∣∣∣∑
bu∈S

〈φ|ξu〉〈ξu|ani 〉
∣∣∣∣
2

(28)

where we have used the fact that |φ〉 = ∑
bu∈S〈ξu|φ〉|ξu〉. We now expand the previous

expression first using the interval Imax:

P(ai ∈ I0) =
∑
n,ai∈I0

∣∣∣∣ ∑
bu∈Imax∩S

〈φ|ξu〉〈ξu|ani 〉 +
∑

bu∈S/Imax

〈φ|ξu〉〈ξu|ani 〉
∣∣∣∣
2

�
∑
n,ai

∣∣∣∣ ∑
bu∈Imax∩S

〈φ|ξu〉〈ξu|ani 〉
∣∣∣∣
2

+
∑
n,ai∈I0

∣∣∣∣ ∑
bu∈S/Imax

〈φ|ξu〉〈ξu|ani 〉
∣∣∣∣
2

+2

∣∣∣∣ ∑
n,ai∈I0

∑
bu∈Imax∩S

〈φ|ξu〉〈ξu|ani 〉
∑

bu∈S/Imax

〈ani |ξu〉〈ξu|φ〉
∣∣∣∣ (29)

where the set S/Imax is constituted by the elements of S that do not belong to Imax. On the
other hand, and using the interval Imin, we have P(ai ∈ I0) = 1 − P(ai /∈ I0) and so

P(ai ∈ I0) = 1 −
∑
n,ai /∈I0

∣∣∣∣ ∑
bu∈S/Imin

〈φ|ξu〉〈ξu|ani 〉 +
∑

bu∈Imin∩S
〈φ|ξu〉〈ξu|ani 〉

∣∣∣∣
2
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� 1 −
∑
n,ai

∣∣∣∣ ∑
bu∈S/Imin

〈φ|ξu〉〈ξu|ani 〉
∣∣∣∣
2

−
∑
n,ai /∈I0

∣∣∣∣ ∑
bu∈Imin∩S

〈φ|ξu〉〈ξu|ani 〉
∣∣∣∣
2

−2

∣∣∣∣ ∑
n,ai /∈I0

∑
bu∈S/Imin

〈φ|ξu〉〈ξu|ani 〉
∑

bu∈Imin∩S
〈ani |ξu〉〈ξu|φ〉

∣∣∣∣. (30)

The two former expansions provide the values of Pmax and Pmin, respectively. They can
be considerably simplified. Let us concentrate on the expansion (29). Using the fact that∑
n,ai

〈ξu|ani 〉〈ani |ξv〉 = δuv and
∑
bu∈Imax∩S |〈φ|ξu〉|2 = ∑

r,bu∈Imax
|〈φ|ψru〉|2, where |ψru〉 are

the eigenstates of B̂, we easily obtain

∑
n,ai

∣∣∣∣ ∑
bu∈Imax∩S

〈φ|ξu〉〈ξu|ani 〉
∣∣∣∣
2

=
∑
n,ai

∑
bu,bv∈Imax∩S

〈φ|ξu〉〈ξv|φ〉〈ξu|ani 〉〈ani |ξv〉

=
∑

bu∈Imax∩S
|〈φ|ξu〉|2 = P(bu ∈ Imax). (31)

Taking the former result into account and using the Shwartz inequality we also obtain∣∣∣∣ ∑
n,ai∈I0

∑
bu∈Imax∩S

〈φ|ξu〉〈ξu|ani 〉
∑

bu∈S/Imax

〈ani |ξu〉〈ξu|φ〉
∣∣∣∣

� P(bu ∈ Imax)
1/2

( ∑
n,ai∈I0

∣∣∣∣ ∑
bu∈S/Imax

〈φ|ξu〉〈ξu|ani 〉
∣∣∣∣
2)1/2

. (32)

Thus the expansion (29) can be cast in the form

P(ai ∈ I0) � {P(bu ∈ Imax)
1/2 +X1/2

1 }2 (33)

whereX1 = ∑
n,ai∈I0 |∑bu∈S/Imax

〈φ|ξu〉〈ξu|ani 〉|2. For the expansion (30) a similar calculation
yields

P(ai ∈ I0) � 1 − {P(bu /∈ Imin)
1/2 +X1/2

2 }2 (34)

where X2 = ∑
n,ai /∈I0 |∑bu∈Imin∩S〈φ|ξu〉〈ξu|ani 〉|2. We have found the first relation between

the probabilities in the representation of Â and the probabilities in the representation of B̂.
To proceed we still have to calculate the maximum values ofX1 andX2 and express these

results in terms of half quantum quantities. The following theorem will do this:

Theorem. If |φc〉 is an L-order classical initial data wavefunction then X1 satisfies

X1 � (1 − p)
{ ∑
bu∈S/Imax

 L(Â, ξu, bu, p)
L|〈φ|ξu〉|

|bu − a|L
}2

(35)

where L(Â, ξu, bu, p) is given by (23) and a is one of the extremes of the interval I0, the one
that minimizes the distance |bu − a|, that is a = a0 +D or a = a0 −D. Moreover, the result
is valid for all probabilities 0 � p < 1 and for all sequences S of central eigenvalues of B̂ (in
particular S can be the set of true eigenvalues of B̂).

If L(Â, ξu, bu, p) is approximately a constant in the range of eigenvalues where |〈φ|ξu〉|
have meaningful values the former result reduces to

X1 � (1 − p)  L(p)

2(2L− 1)IB
(36)

where  L(p) =  L(Â, ξu, bu, p) for any bu for which |〈φ|ξu〉| 
� 0. Under the same
conditions X2 satisfies exactly the same relation: X2 � (1 − p)  L(p)

2(2L−1)IB
.
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Proof. We will concentrate on the case of X1. A similar calculation can be performed for X2.
From the definition of X1 we easily obtain

X1 �
∑

bu,bv∈S/Imax

|〈φ|ξu〉〈ξv|φ〉|
∣∣∣∣ ∑
n,ai∈I0

〈ξu|ani 〉〈ani |ξv〉
∣∣∣∣. (37)

For the second term of the right-hand side of the previous inequality, we have∣∣∣∣ ∑
n,ai∈I0

〈ξu|ani 〉〈ani |ξv〉
∣∣∣∣ �

( ∑
n,ai∈I0

|〈ξu|ani 〉|2
)1/2( ∑

n,ai∈I0
|〈ξv|ani 〉|2

)1/2

. (38)

Furthermore, we notice that both bu, bv /∈ Imax and use the result (65) in (b) from the appendix
to obtain ∑

n,ai∈I0
|〈ξu|ani 〉|2 � (1 − p) L(Â, ξu, bu, p)

2L

|bu − a|2L (39)

where a is one of the extremes of the interval I0. Putting these results together it is
straightforward to obtain (35), proving the first result of the theorem.

To proceed we consider the case in which L(Â, ξu, bu, p) is approximately a constant in
the range of eigenvalues where |〈φ|ξu〉| have meaningful values. In this case (35) reduces to

X1 � (1 − p) L(p)2L
{ ∑
bu∈S/Imax

|〈φ|ξu〉|
|bu − a|L

}2

. (40)

The aim is to maximize the term inside the brackets to obtain the highest possible value of
X1. Let then |φ〉 = ∑

bu∈S〈ξu|φ〉|ξu〉 and let Cu = |〈ξu|φ〉|. As an intermediate step let us
assume that |φ〉 spreads for an interval from E0 = a0 + L(p) +D (the extreme of Imax) to an
arbitrary E ∈ R, i.e. Cu = 0 for bu /∈ [E0, E]. In the end we will see that the result for X1 is
independent of E, that might be taken to infinity. Let us proceed: since bu grows in steps of
size 2IB , we divide the former interval into sub-intervals of size 2IB . Let us say that we have
N such sub-intervals: 2IB = (E − E0)/N . We then obtain

∑
bu∈S/Imax

|〈φ|ξu〉|
|bu − a|L =

N∑
n=0

Cn

( L + 2nIB)L
= 1

2IB

N∑
n=0

2IB
Cn

( L + 2nIB)L

� 1

2IB

∫ E

E0

C(x)

|x − a|L dx (41)

where Cn = |〈φ|ξn〉| and |ξn〉 is the state associated to the central eigenvalue bn =
a + L(p) + 2nIB . Our task now is to maximize the previous integral subject to the constraint

N∑
n=0

C2
n = 1 �⇒ 1

2IB

∫ E

E0

C(x)2 dx = 1. (42)

This is easily done using the Lagrangian multiplier method. We obtain∑
bu∈S/Imax

|〈φ|ξu〉|
|bu − a|L �

(
1

2(2L− 1)IB( L(p))2L−1

)1/2

. (43)

Substituting this result in (40) we finally obtain (36), proving the theorem. �
Two brief remarks are in order: firstly, to say that since |〈φ|ξu〉| = |〈φQ|ξQ

u 〉| the calculation
of the right-hand side of inequality (35) might be done explicitly once the initial data of the
half quantum system and the operator B̂ are given and thus we may use this result to obtain
the value of Pmax from the exclusive knowledge of the half quantum quantities; secondly, to
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point out that the result (36) could not have been obtained if we had used the eigenstates |ψru〉
of B̂, in which case IB = 0 and thus X1 would not be bounded.

We now replace the maximum values of X1 and X2 in (33) and (34) and finally obtain

P(bu ∈ Imin)− Emin � P(ai ∈ I0) � P(bu ∈ Imax) + Emax (44)

where P(bu ∈ Imin) = ∑
r,bu∈Imin

|〈bru|φQ〉|2, P(bu ∈ Imax) = ∑
r,bu∈Imax

|〈bru|φQ〉|2 and Emin

and Emax are given by the following expressions:

Emin = 2P(bu /∈ Imin)
1/2

(
(1 − p) L(p)
2(2L− 1)IB

)1/2

+
(1 − p) L(p)
2(2L− 1)IB

Emax = 2P(bu ∈ Imax)
1/2

(
(1 − p) L(p)
2(2L− 1)IB

)1/2

+
(1 − p) L(p)
2(2L− 1)IB

.

(45)

Notice that, given the degree of validity L of the classical sector initial data, we can play with
the interval I0 and with the values of IB and p, which in turn impose a value on  L(p), to
minimize the error of the predictions for the probabilities. To obtain some feeling about the
accuracy of the predictions let us choose some explicit values forL, IB and p. Let IB = δL(B̂)
so that  L(p) = 2IB/(1 − p)1/2L. The errors Emin and Emax become

Emin = 2P(bu /∈ Imin)
1/2

(
(1 − p) 2L−1

2L

2L− 1

)1/2

+
(1 − p) 2L−1

2L

2L− 1

Emax = 2P(bu ∈ Imax)
1/2

(
(1 − p) 2L−1

2L

2L− 1

)1/2

+
(1 − p) 2L−1

2L

2L− 1
.

(46)

Let us consider L = 1, meaning that the classical sector initial data (O0
i , δi) is first-order

valid. Let us also choose p = 0.99. We can then state that, in the representation of
Â, the states |ξu〉 (21) have, at least, 99% of their probability confined to the intervals
Iu = [bu − 20δ1(B̂), bu + 20δ1(B̂)], where δ1(B̂) is given by (24) and is of the size of a
classical error margin. Moreover,

Emin = 2 × 0.31 × P(bu /∈ Imin)
1/2 + 0.1

Emax = 2 × 0.31 × P(bu ∈ Imax)
1/2 + 0.1

(47)

and thus, in the worst case,

P(bu ∈ Imin)− 0.72 � P(ai ∈ I0) � P(bu ∈ Imax) + 0.72 (48)

with the difference between the ranges of Imax, Imin and I0 being given by 20δ1(B̂). An error
of 72% is huge. The reason for such a large error lies in the fact that the conditions imposed
over |φc〉 are the least restrictive possible, L = 1. In other words, the classical initial data are
the least valid possible. To see what happens when we increase the degree of validity of the
classical sector initial data let us make L = 10. We consider once again IB = δ10(B̂) but, this
time, let us choose p = 0.999 99 = 1 − 10−5. We have  10(p = 0.999 99) = 3.6δ10(B̂) and

Emin = 0.0019P(bu /∈ Imin)
1/2 + 9.4 × 10−7

Emax = 0.0019P(bu ∈ Imax)
1/2 + 9.4 × 10−7 (49)

and thus, in the worst case, P(bu ∈ Imin) − 0.0019 � P(ai ∈ I0) � P(bu ∈ Imax) + 0.0019.
This is an error of 0.19% with the difference between the ranges of Imax, Imin and I0 decreasing
to 3.6δ10(B̂).
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3. Half quantization

We start by pointing out, once again, that the predictions P(ai ∈ I0) and its error margins can
be obtained if we have the knowledge of the operator B̂ and in no way require (except to obtain
B̂) the knowledge of the full quantum operator Â. This means that if we were able to calculate
B̂ directly then we would be able to make predictions for the evolution of the half quantum
system without firstly having to obtain its fully quantum version. Therefore, the aim of this
section is to obtain a framework able to provide the operator B̂ directly from the initial data
of the half quantum system without requiring previous knowledge of the full quantum theory.

3.1. The unquantization map

In section 2.2 we present the first definition of the unquantization map. The motivation for that
definition of V0 was the fact that it validates the expansions (19) and (20), which were crucial
to develop the entire approximation procedure presented in the last section. It has already been
pointed out that the map V0 is a trivial generalization of the unquantization map presented
in [15]. Let us name this last map V c

0 . In fact the action of V0 over a classical sector operator is
identical to the action of V c

0 . In that paper we saw that V c
0 is just the inverse map of the Dirac

quantization [16, 17]. Taking this result into account we present a new, however equivalent,
definition of the half unquantization:

Definition 2 (second unquantization map). Let ∧ be the Dirac quantization map [17],
∧ : A(T ∗M1) −→ A(H1) and let Â = ∑

j Â
Q
j Â

c
j where ÂQ

j and Âc
j are arbitrary multiple

products of quantum and classical sector operators, respectively (16). The unquantization ∨
is a map from the algebra A(H) to the algebra S (check for the definition of S in definition 1)
defined by the following rules:

(1) ∨(Â) = ∑
j ∨(ÂQ

j ) ∨ (Âc
j ).

(2) ∨(Âc
j ) = Ac

i iff ∧ (Ac
j ) = Âc

j .

(3) ∨(ÂQ
j ) = ÂQ

j .

Let us study some properties of ∨:
(1) The map ∨ is equivalent to the map V0 of definition 1. This is so because rule (2) of

the definition of ∨ is equivalent to rule (3) of the definition of V0. This fact was extensively
discussed in [15].

(2) Just like V0, the map ∨ is beset by order problems. In general there are several
different classical sector observables that when quantized yield the same quantum operator.
Let Ac

1 
= Ac
2 be two such observables, i.e. ∧(Ac

1) = Âc and also ∧(Ac
2) = Âc. This means

that ∨(Âc) = Ac
1 but also ∨(Âc) = Ac

2. Hence the map ∨ is not one to one. On the other
hand, the predictions (44) and (45) of the last section are made for a general quantum operator
Â (for instance Â = ÂcÂQ) and might be obtained using any of the operators B̂ = V0(Â)

(or equivalently, B̂ = ∨(Â)). Therefore, the ambiguity of ∨ could be problematic if the
predictions obtained by using two different B̂ (for instance B̂1 = Ac

1Â
Q and B̂2 = Ac

2Â
Q)

were inconsistent.
However, one can easily realize that this is not the case. The difference B̂2 − B̂1 is

proportional to a leading factor of cj h̄2 (where cj is the highest numerical coefficient of
Â displayed in the orders from which B̂1 and B̂2 were calculated). We have already seen
following (20) that the validity of the predictions of the last section rests upon the premise that
the numerical factors of B̂ � cj h̄

2 (otherwise B̂ cannot be considered for reproducing the
predictions of Â). We also saw that this premise is satisfied if the original operator Â, from
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which B̂ was calculated, satisfies some order conditions. Therefore, and if B̂2 and B̂1 are both
valid operators, obtained from Â displayed in required orders, the difference B̂2 − B̂1 is not
meaningful when compared to the imprecision (which is proportional to the numerical factors
of B̂ (24)) associated with the predictions obtained by using either B̂1 or B̂2. In conclusion,
B̂1 and B̂2 provide physical predictions which are consistent with each other, solving the
ambiguity.

(3) Unquantizing the product of two classical sector operators: let us consider two
general classical observables B and C. To quantize BC one uses the symmetrization rule:
∧(BC) = 1/2(B̂Ĉ + ĈB̂). We just use the same rule for the unquantization:

∨(B̂Ĉ) = ∨
(
B̂Ĉ + ĈB̂

2
+

1

2
[B̂, Ĉ]

)
= BC +

1

2
ih̄{B,C}. (50)

Notice that the prescription is beset by order problems (comment (2)).
(4) Unquantization of a self-adjoint operator: if Â = Âc then we obtain from rule (2)

∨(Â†) = ∨(Â)∗. For the case of a general operator Â = ∑
j Â

c
j Â

Q
j we have

∨(Â†) =
∑
j

∨(Âc
j )

∗(ÂQ
j )

† = ∨(Â)† (51)

and if Â = Â† then ∨(Â)† = ∨(Â†) = ∨(Â) and so ∨(Â) is also self-adjoint.
(5) Unquantizing the brackets: for the simplest case of Â = Âc and B̂ = B̂c, from rule (2)

one immediately has

∨[Â, B̂] = ∨(∧(ih̄{A,B})) = ih̄{A,B}. (52)

For the most general case let us first put Â = ÂcÂQ and B̂ = B̂cB̂Q, which only excludes
sums of operators which, using rule (1), are straightforward to handle. We obtain

[Â, B̂] = ÂcB̂c[ÂQ, B̂Q] + [Âc, B̂c]B̂QÂQ

�⇒ ∨([Â, B̂]) = ∨(ÂcB̂c)[ÂQ, B̂Q] + ∨([Âc, B̂c])B̂QÂQ (53)

and using (50) and (52) we obtain

∨([Â, B̂]) = AcBc[ÂQ, B̂Q] +
ih̄

2
{Ac, Bc}(ÂQB̂Q + B̂QÂQ). (54)

3.2. Half quantization and half quantum mechanics

Equation (54) can be displayed in a slightly different form:

∨([Â, B̂]) = [∨(Â),∨(B̂)] + ih̄{{∨(Â),∨(B̂)}} = (Ã, B̃) (55)

where the double brackets are defined by

{{∨(Â),∨(B̂)}} = 1
2 {Ac, Bc}(ÂQB̂Q + B̂QÂQ)

= 1

2

∑
i

∂Ã

∂qi

∂B̃

∂pi
− ∂Ã

∂pi

∂B̃

∂qi
+
∂B̃

∂pi

∂Ã

∂qi
− ∂B̃

∂qi

∂Ã

∂pi
(56)

and we have introduced the notation Ã = ∨(Â) and defined the new bracket ( , ) = [ , ]+ih̄{{ , }}.
This bracket was first proposed in [3,4]. The motivation to define it this way was given in terms
of the properties of the emerging theory, namely that it properly generalizes both quantum and
classical mechanics. The bracket is known to be antisymmetric and multilinear but it does
not satisfy the Jacobi identity. This caused much debate in the literature [1, 2, 19–21]. We
will come back to this problem in the conclusions. Firstly let us finish the presentation of the
dynamical structure of half quantum mechanics.
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Given the unquantization map of definition 2 we are able to define a quantization
prescription mapping a general classical dynamical system to the corresponding half quantum
one. One just needs to specify the classical and the quantum sectors to be of the original
classical theory, that is to provide T ∗M1 and T ∗M2. Let then F be the algebra of observables
over T ∗M = T ∗M1 ⊗ T ∗M2. The remaining notation is in accordance with the previous
definition.

Definition 3 (Half quantization map). The half quantization is defined to be the map

∩ : F −→ S ∩ = ∨ ◦ ∧ A −→ Ã = ∩(A) (57)

where ∧ : F −→ A(H1 ⊗H2) is the Dirac quantization map and ∨ is the unquantization map
of definition 2.

The properties of
⋂

follow directly from its definition: let A,B ∈ F :

(1) ∩(f (qi, pi)) = f (qi, pi)Î and ∩(qα) = q̂α , ∩(pα) = p̂α , i = 1 . . .M , α =
(M + 1) . . . (M +N).

(2) ∩ is a linear map: ∩(A + bB) = ∩(A) + b ∩ (B), b ∈ C.
(3) ∩(f (qi, pi)g(qα, pα)) = f (qi, pi) ∧ (g(qα, pα)).
(4) ∩({A,B}) = (ih̄)−1(∩(A),∩(B)).

We are now in position to study the theory resulting from applying the half quantization
procedure to a given classical theory. First we have to choose a CSCO for the quantum sector
of the theory. Let it be, for instance, the set {q̂α}, α = M + 1 . . .M + N . The initial data
for the classical sector is given by the set {q0

i = qi(t0), p
0
i = pi(t0)} and the corresponding

error margins δqi and δpi , i = 1 . . .M . The quantum initial data are given by the initial data
wavefunction |φQ〉 ∈ H2. The dynamical evolution of the half quantum system is determined
by the following set of equations:

˙̃
Ok = ∩({Ok,H }) = 1

ih̄
(Õk, H̃ ) (58)

where Õk, k = 1 . . . 2(M +N) is any of the fundamental variables. The former set of equations
has the formal solutions

Õk(t) =
∞∑
n=0

1

n!

(
t

ih̄

)n
(. . . (Õk, H̃ ), . . . , H̃ ) = Ok(q̂α, p̂α, q0

i , p
0
i , t). (59)

Notice that (58) is just the same set of equations as that resulting from applying the
unquantization map to the standard quantum evolution equations for the observables Ôk(t)
and so is the solution (59). Hence, the observables Õk(t) are just the operators B̂ we need to
supply to obtain the predictions (44) and (45).

4. Example

To illustrate the procedure by which half quantum mechanics makes predictions for the time
evolution of a given dynamical system, let us consider the following system of two interacting
particles, described by the Hamiltonian

H̃ = P̂ 2

2M
+
p2

2m
+ kqP̂ (60)

where (Q̂, P̂ ) are the fundamental observables of the quantum particle of massM , (q, p) are
the canonical variables of the classical particle of mass m and k is a coupling constant. The
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initial data for the quantum particle are given by |φQ〉, while the initial-time configuration of
the classical particle is described by the data {q(0), p(0), δq(0), δp(0)}.

Solving the half quantum equations of motion (58) we obtain the time evolution of the
fundamental observables of the half quantum system

q̃(t) = q(0) +
p(0)

m
t − kP̂ (0)

2m
t2

p̃(t) = p(0)− kP̂ (0)t

Q̃(t) = Q̂(0) +

(
P̂ (0)

M
+ kq(0)

)
t +

k

2m
p(0)t2 − k2

6m
P̂ (0)t3

P̃ (t) = P̂ (0)

(61a)

together with the errors δL(B̂) of the half quantum operators (24)

δL(q̃(t)) = δq(0) +

∣∣∣∣ tm
∣∣∣∣ δp(0)

δL(p̃(t)) = δp(0)
δL(Q̃(t)) = |kt |δq(0) +

∣∣∣∣kt22m

∣∣∣∣ δp(0)
δL(P̃ (t)) = 0

(61b)

a result that is valid for all L ∈ N . The spreads are of the general form  L(B̂) =
δL(B̂)/(1 − p)1/2L, for B̂ = q̃(t), p̃(t), Q̃(t) or P̃ (t).

Let Â be one of the full quantum operators q̂(t), p̂(t), Q̂(t) or P̂ (t), the ones we would
have obtained if we had performed the full quantum treatment of the system with Hamiltonian
Ĥ = P̂ 2/2M + p̂2/2m + kq̂P̂ . Let B̂ be the corresponding half quantum operator (61).
Moreover, let |ani 〉 be a complete set of eigenstates of Â (ai is the associated eigenvalue and
n is the degeneracy index) and |bru〉 a complete set of eigenvectors of B̂ (bu is the associated
eigenvalue and r is the degeneracy index). If the classical sector initial data are taken to be
first-order valid (L = 1) the half quantum predictions for the outputs of a measurement of the
fully quantum operator Â (choosing p = 0.99 and IB = δ1(B̂)) are given by (48)

P(bu ∈ Imin)− 0.72 � P(ai ∈ I0) � P(bu ∈ Imax) + 0.72

where I0 = [a0−D, a0 +D] is an arbitrary interval centred at a0 ∈ R with rangeD � 20δ1(B̂),
the error δ1(B̂) is given by (61), Imax = [a0 − (D + 20δ1(B̂)), a

0 + (D + 20δ1(B̂))] and
Imin = [a0 − (D − 20δ1(B̂)), a

0 + (D − 20δ1(B̂))]. Moreover, P(bu ∈ Imin,max) =∑
r,bu∈Imin,max

|〈φQ|bru〉|2.
If the classical sector initial data {q(0), p(0), δq(0), δp(0)} are tenth-order valid then,

as we have seen, the precision of the half quantum predictions increases considerably (let
p = 0.999 99 and IB = δ10(B̂)):

P(bu ∈ Imin)− 0.0019 � P(ai ∈ I0) � P(bu ∈ Imax) + 0.0019

where, this time, Imax = [a0 − (D + 3.6δ10(B̂)), a
0 + (D + 3.6δ10(B̂))], Imin = [a0 − (D −

3.6δ10(B̂)), a
0 + (D − 3.6δ10(B̂))] and δ10(B̂) = δ1(B̂) is given by (61).

Clearly the former predictions are not valid in general. They are valid if
the two descriptions of the classical sector initial-time configuration, the classical
{q(0), p(0), δq(0), δp(0)} and the quantum |φc〉, satisfy some consistency conditions. These
conditions are the L-order classicality conditions. Let us just notice that, following the
procedure of section 2.1, the L = 1 fundamental sequences (1) for this system are S1 = q

and S2 = p, which are exactly the same sequences as for the example of the harmonic
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oscillator of section 2.1. Therefore the L-order classicality conditions for |φc〉 are exactly the
conditions (6), (7). As we saw, Gaussian wavefunctions provide well known solutions for
which the classicality conditions reduce to (9). If, at the initial time, the classical sector is in
such a state then the L-order half quantum predictions are valid.

5. Conclusions

The general prescription to derive a theory of coupled classical–quantum dynamics presented
in this paper might be summarized in three main steps. (1) Identification of the properties
that should be satisfied by the full quantum initial data so that it might be properly described
by a set of half quantum initial data (section 2, equation (3)). (2) Establishment of a relation
between a general full quantum observable and the corresponding half quantum one so that one
is able to reproduce the predictions of quantum mechanics using the half quantum operators
(equation (20)). This involves the derivation of a relation between the (central) eigenvectors
of B̂ and the eigenvectors of Â (equation (23)) and then of a relation between the probabilities
in the representation of B̂ and of Â (equations (44) and (45)). (3) Finally, the derivation of a
framework providing the half quantum operators without requiring previous knowledge of the
full quantum theory (section 3).

Certainly, there are many different ways of implementing this general plan (see for
instance [2, 18]). In this paper we presented a particular derivation of a theory of coupled
classical–quantum dynamics that was named half quantum mechanics. This theory, in the
form of a set of axioms, was first presented in [3, 4] and its properties have been extensively
discussed in the literature [1, 2, 19–21]. In particular, the fact that the bracket structure does
not satisfy the Jacobi identity is known to be problematic, the dynamical structure displaying a
set of undesirable properties (it is not unitary and time evolution does not preserve the bracket
structure, just to mention two of the most intriguing). However, and despite the fact that
the internal structure of half quantum mechanics is not the most desirable, the theory was
shown to provide a valid description of coupled classical–quantum dynamics in the sense that
it reproduces the results of quantum mechanics in the appropriated limit. The key issue in
half quantum mechanics is, of course, the way in which its predictions should be interpreted.
Associated with every prediction is an error margin, and within this error margin the theory is
physically valid.

To finish we would like to make a few comments:

(a) There is an uncertainty associated with all predictions made by the half quantum theory.
Since we do not have a complete knowledge of the initial data wavefunction we could not
expect to have a complete deterministic prediction, much the same as what happens in
classical mechanics. As expected, the degree of precision of the half quantum predictions
is related to the classicality conditions that are assumed to be satisfied by the classical
sector initial data wavefunction or, in other words, to the degree of validity of the classical
initial data.

(b) A different bracket for classical–quantum dynamics has been presented in the literature [1].
The new theory was also postulated and motivated in terms of its properties. This has
caused much debate over which would be the best structure for a theory of coupled
classical–quantum dynamics. We would like to point out that Anderson theory might also
be obtained through a procedure similar to that presented in this paper. To do this we just
have to use a slightly different unquantization map. The deductive approach will provide a
way of comparing the two theories with respect to their consistency with the full quantum
description.
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(c) Lastly, as a side result, we realized that the fact that the half quantum bracket does not
satisfy the Jacobi identity is clearly a consequence of the fact that the unquantization map
is not one to one. This might point out a path to obtain a new, better behaved theory of
coupled classical–quantum dynamics [18].

Appendix. Error ket framework

The aim of this appendix is just to present some of the results of the error ket framework. For
a more detailed presentation the reader should refer to [15]. Let us start by introducing the
relevant definitions. Let X̂i, i = 1 . . . n be a set of n operators acting on the Hilbert space H
and let |ψ〉 be the wavefunction describing the system.

Definition (error ket). We define the n-order mixed error ket |E(X̂1, X̂2, . . . , X̂n, ψ ,
x0

1 , x
0
2 , . . . , x

0
n)〉, as the quantity

|E(X̂1, X̂2, . . . , X̂n, ψ, x
0
1 , x

0
2 , . . . , x

0
n)〉 = (X̂1 − x0

1 )(X̂2 − x0
2 ) . . . (X̂n − x0

n)|ψ〉 (62)

where x0
i are complex numbers and the operators X̂i do not need to be self-adjoint. The error

bra 〈E(X̂1 . . . X̂n, ψ, x
0
1 , . . . , x

0
n)| is defined according to the definition of the error ket. When

there is no risk of confusion we will also use the notation |EX1,...,Xn〉 for the mixed error ket.
Moreover, when X̂1 = X̂2 = · · · X̂n = X̂ the error (62) is named ‘n-order error ket’ and we
write it in the form |EnX〉 = |En(X̂, ψ, x0)〉.

Let us present some properties of the former quantity:

(a) The error ket provides a confinement of the wavefunction. Let X̂ be self-adjoint and
x0 ∈ R. Given 〈EnX|EnX〉, with each ‘quantity of probability’ p we can associate an
interval I around x0, I = [x0 −  n, x0 +  n], such that the probability of obtaining
a value x ∈ I from a measurement of X̂ is at least p. The size of the interval I is
dependent on X̂, ψ and x0 only through the value of 〈EnX|EnX〉. We call the quantity
 n =  n(X̂, ψ, x0, p) the n-order spread of the wavefunction.  n is given by

 n(X̂, ψ, x
0, p) =

( 〈EnX|EnX〉
1 − p

)1/2n

. (63)

If X̂ is not self-adjoint then the former result can also be obtained, but in this case I is a
ball of radius  n in the complex plane.

(b) Let X̂ be self-adjoint and x0 ∈ R. The former result can be restated in the following way:
given 〈EnX|EnX〉 and a distance d , the probability of obtaining a value x /∈ [x0 − d, x0 + d]
from a measurement X̂ is at the most 〈EnX|EnX〉/d2n. In fact (let |x, k〉 be a complete set of
eigenvectores of X̂, where x is the associated eigenvalue and k is the degeneracy index),

〈EnX|EnX〉 =
∑
x,k

(x − x0)2n|〈ψ |x, k〉|2

�
∑

x /∈[x0−d,x0+d],k

(x − x0)2n|〈ψ |x, k〉|2

� d2n
∑

x /∈[x0−d,x0+d],k

|〈ψ |x, k〉|2 (64)

and this implies ∑
x /∈[x0−d,x0+d],k

|〈ψ |x, k〉|2 � 〈EnX|EnX〉
d2n

=  n(p)
2n(1 − p)
d2n

. (65)
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